The perturbation equation of a static symmetrical homogeneous space-time

نویسندگان

  • Jose L. Martinez-Morales
  • JOSE L. MARTINEZ-MORALES
چکیده

In absence of explicit solutions of the perturbation equation of a static symmetrical homogeneous space-time, the best we can do is to construct a quasi-transformation. In this framework, we solve the perturbation equation with initial data and a number of results are derived. Far from the horizon of a black hole of even space dimension N , a mass-less field decays as r(−r + t) 1−N 2 −l in space-time, where l is a harmonic number of the sphere. A relation of energy and momentum of a particle with mass in a hyper black hole is discovered and a solution to the equation of Klein-Gordon in the metric of Schwarzschild-Tangherlini with initial data on the hypersphere is proposed. Also, the Green’s function of the Klein-Gordon equation in Schwarzschild coordinates is calculated. This function is a sum on the harmonic modes of the sphere. The first term is a double integration on the spectrum of energy and the momentum of the particle. Far from the horizon, the double integration is approximated by an integration on a line defined by the relation of energy and momentum of a free particle. From here, the potential of Yukawa is derived. Finally, the linear perturbation equations are derived and solved exactly. The master equation with initial data of a small perturbation in a static symmetrical homogeneous space-time, like a (possibly higher dimensional) Schwarzschild black hole, is studied. A main statement of the article is that for each harmonic mode of the horizon there are two solutions that behave similarly at large. In the basic mode, the asymptote of a field (an eigentensor of the Lichnerowicz operator, for example) decays at infinity according to the universal law (−r + t) 1−N 2 . These solutions occur in an integral form. The analysis we present is of a small perturbation to the full static symmetrical solution. The higher order perturbations will appear in a sequel. We determine independently perturbations of the space-time in dimension 1+N ≥ 4, where the system of equations can be reduced to a master equation — a tensor differential equation. The solutions are integral transformations which in some cases reduce to explicit functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Influence of Rigidity, Irregularity and Initial Stress on Shear Waves Propagation in Multilayered Media

The propagation of shear waves in an anisotropic fluid saturated porous layer over a prestressed semi-infinite homogeneous elastic half-space lying under an elastic homogeneous layer with irregularity present at the interface with rigid boundary has been studied. The rectangular irregularity has been taken in the half-space. The dispersion equation for shear waves is derived by using the pertur...

متن کامل

New analytical soliton type solutions for double layers structure model of extended KdV equation

In this present study the double layers structure model of extended Korteweg-de Vries(K-dV) equation will be obtained with the help of the reductive perturbation method, which admits a double layer structure in current plasma model. Then by using of new analytical method we obtain the new exact solitary wave solutions of this equation. Double layer is a structure in plasma and consists of two p...

متن کامل

On The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method

In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...

متن کامل

Application of He's homotopy perturbation method for solving Sivashinsky equation

In this paper, the solution of the evolutionaryfourth-order in space, Sivashinsky equation is obtained by meansof homotopy perturbation method (textbf{HPM}). The results revealthat the method is very effective, convenient  and quite accurateto systems of nonlinear partial differential equations.

متن کامل

Nonresonant Excitation of the Forced Duffing Equation

We investigate the hard nonresonant excitation of the forced Duffing equation with a positive damping parameter E. Using the symbolic manipulation system MACSYMA, a computer algebra system. we derive the two term perturbation expansion by the method of multiple time scales. The resulting approximate solution is valid for small values of the coefficient e As the damping parameter e increases, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009